Life-saving immunotherapy treatment: National clinical trial needs your support
• Page 4

Healing the broken hearts of children – revolutionary concept for treating congenital heart conditions
• Page 6

More than the ‘baby blues’: How to diagnose mental health conditions related to pregnancy and giving birth
• Page 8

QIMR Berghofer
Medical Research Institute
THE FUTURE OF HEALTH
The season of spring brings new life. Embracing the essence of the season, we have created a baby and mothers edition – showcasing research focused on babies, children, adolescents and motherhood.

After treating a three-year-old boy with a new immunotherapy, we are ready to start a national clinical trial to help more children suffering a similar fate. The therapies are to be manufactured by QIMR Berghofer’s cell manufacturing facility, and provided to the children free of charge. Read more on page 4.

In another ground-breaking development, our researchers are currently working on a collaborative project that has the potential to revolutionise treatments for children born with congenital heart conditions. Read more on page 6.

On page 8, we feature a new research project aimed at healing the mental health of new mothers. Our researchers are pioneering women’s health in this area, developing a screening tool to sooner diagnose women who are experiencing more than the ‘baby blues’.
Also in the spirit of new beginnings, I will be hanging up the lab coat and retiring in early January 2020. During my 8-year tenure, I have had the privilege of overseeing an era of unparalleled scientific, commercial and translational research accomplishments at the Institute. It is been a great pleasure to represent the Institute.

Rest assured, our scientists continue their research projects as they strive to improve the future of health for Australians, every day.

Professor Frank Gannon
Director and CEO

Contents

4 Life-saving immunotherapy treatment: National clinical trial needs your support

6 Healing the broken hearts of children – revolutionary concept for treating congenital heart conditions

8 More than the ‘baby blues’: How to diagnose mental health conditions related to pregnancy and giving birth?

10 Miscarriage, then and now

11 Welcoming Associate Professor James Scott, Head of Mental Health Program

12 Landmark study debunks the myth that anorexia is all in the mind

14 Iron deficiency: Pregnant women and their babies are most vulnerable

16 What are the implications of changed sleep patterns in premature babies?

18 QIMR Berghofer in the community

Cover image:
Calm the mind and colour this life-meets-science illustration.

Artist: Ciara O’Hanlon
It’s common for a patient to experience complications after receiving a stem cell transplant. But when that patient becomes an innocent three-year-old boy, it’s almost too much to bear.

The boy developed complications in early 2018, several months after he received a stem cell transplant to treat a serious genetic immune disease. His depleted immune system was unable to fight off a viral infection that threatened his sight, and could have ultimately taken his life.

Researchers from QIMR Berghofer Medical Research Institute were alerted to the boy’s serious condition by his doctors. Previous clinical trials conducted by QIMR Berghofer showed immunotherapy to be effective at treating other virus-related diseases, but the team couldn’t be sure it would work to treat this child’s condition.

The QIMR Berghofer team developed special ‘turbo-charged’ cellular immunotherapy for the boy, using immune cells collected from young boy’s mother who was her son’s donor for the initial transplant.

‘Before patients receive a haploidentical stem cell transplant (where the donor is a half-match for the patient) certain immune cells – like killer T cells and B cells – are removed from the donor’s stem cells,’ Professor Rajiv Khanna, head of QIMR Berghofer’s Centre for Immunotherapy and Vaccine Development, explained.

‘But this necessary step of removing immune cells from the stem cells leaves transplant patients at high risk of developing viral infections.

‘So we took white blood cells from the mother and effectively “trained” them in the laboratory to recognise and destroy four common viruses.’

It took several rounds of treatment, but these special ‘turbo-charged’ immune cells successfully cleared the eye infection and also helped in restoring the patient’s own immune system to fight the disease.

‘We think this treatment will save lives and the future suffering of many more children.’

-Professor Rajiv Khanna
This is the first time in the world that a child has been treated for a viral eye infection using cellular immunotherapy, which permanently cleared the virus from his system. The therapy was provided under the very stringent conditions of the Australian Government’s Department of Health special access scheme that is designed to deal with potentially life-threatening situations where conventional therapies are not available. Its success underscores the need for a clinical trial to see if this special treatment can be applied to other patients with similar conditions.

Clinical trial patients receive all of their immunotherapy treatments free of charge

The team is now planning a multi-centre, national clinical trial using cellular immunotherapy to treat similar conditions in more children.

‘Now we have proved that it is safe to give cellular immunotherapies to children with compromised immune systems, we are planning to start clinical trials of this treatment in Brisbane, Sydney and Melbourne,’ Professor Khanna said.

‘We will develop the cellular immunotherapies here for children who will undergo stem cell transplants for leukaemia or for other serious immune conditions.

‘We think this treatment will save lives and the future suffering of many more children.’

The challenge isn’t the science, it’s the funding

It’s not fair that these children and their families have had to endure so much suffering. A life lived in the shadow of cancer and other crippling, virus-related diseases – praying for a cure.

We dream that the word ‘cure’ will no longer be followed by the words ‘it’s impossible’.

We are ready to start making the impossible, possible. We are ready to start a national clinical trial to help more sick children fight their life-threatening conditions.

No amount is too small to make a difference:

$100
provides collection of blood samples to use in the manufacture of T cell therapy

$200
provides a G rex container for culturing immune cells for immunotherapy

Together, we can realise the start of this national immunotherapy clinical trial. Will you join us by giving a donation today?
Queensland researchers are quite literally working on healing the hearts of sick kids.

Thousands of Australian children are currently living with congenital heart diseases, with no known cure. Congenital heart disease is the most common birth defect in Australia and affects around 1 in 100 babies.

Ultimately, the future is uncertain for these children. Many won’t live to see their 30th birthday, and they will likely need ongoing care throughout their short lives.

‘What happens for these kids is that their heart function isn’t optimal, and over time that can lead to heart failure. In many cases, this happens during childhood or adolescence,’ Associate Professor James Hudson, Head of QIMR Berghofer’s Organoid Research Laboratory, said.

‘Surgical procedures can prolong the life of these children, but there is no regenerative treatment available for the heart, for either adults or children.

‘Our aim is to improve the health of children living with congenital heart disease. We plan to build on some of the new concepts from other programs that focus on generating human heart patches for adult patients with heart failure,’ he said.

The theory behind the concept

Researchers have identified that in some cases of congenital heart disease the right ventricle balloons out and becomes larger, which affects the heart’s pumping efficiency.

In a ground-breaking research concept Associate Professor Hudson is growing a biological patch made of stem cells, specifically designed to be surgically attached to the patient’s heart. The patch will join with the heart — strengthening the wall to prevent ballooning and enhancing the pumping of the heart chamber.

Associate Professor Hudson explains it’s like adding a patch of living heart to the patient’s own heart.
Making the stem cell patch

The scope of such a complex project is wide-reaching. Associate Professor Hudson is collaborating with an Australia-wide team of doctors and scientists, including bioengineers, cell biologists, researchers and cardiac surgeons.

‘We are designing our patches in a unique way that we hope prevents the right ventricle from inflating.

‘Currently, we’ve defined the conditions that optimise the patch, and we’re testing some of the prototype moulds that will be used to make the patches.’

This phase of research will take at least another 12 months to complete. However, translating the research into clinical practice could take a further five years.

Any funding we receive from our donors will allow us to further our progress.

‘There is still so much work to do,’ he said.

‘We don’t have anywhere near enough funding to see the project through to completion at this stage.’

In a ground-breaking research concept
Associate Professor Hudson is growing a biological patch made of stem cells, specifically designed to be surgically attached to the patient’s heart.

It’s a truly multidisciplinary project, with the current stage of research being based in the lab.

The patch is made from human cardiac muscle cells derived from pluripotent stem cells (universal cells that can produce any tissue the body needs to repair itself) in the QIMR Berghofer Organoid Research Laboratory.

‘Researchers have previously found that cardiac patches alleviate heart arrhythmias, and get better cellular retention compared to an injection of cardiac cells,’ he said.
Postpartum depression, also called postnatal depression, is probably the most common mental health disorder known to affect new mothers. But researchers say some symptoms that women may experience could be hiding a less common condition, such as post-traumatic stress disorder (PTSD). This knowledge has forged a new pathway of research.

Genetics and depression

Professor Sarah Medland began looking at the impact of severe morning sickness on expectant mothers and the correlation with depression. Known as hyperemesis gravidarum (HG), this is more than morning sickness with women suffering severe and persistent nausea and vomiting leading to dehydration and weight loss. More became known about this condition following media reports regarding the Duchess of Cambridge, Kate Middleton, suffering throughout all three of her pregnancies.

‘More women become depressed after suffering with HG during pregnancy’, lead investigator, Professor Medland, said.

‘Similarly, there were reports of women having more extreme nausea and vomiting if they had experienced depression prior to becoming pregnant’.

Professor Medland found that there are genetic risk factors shared between depression and severe nausea and vomiting during pregnancy that can, in part, explain their co-occurrence.

Professor Medland confirmed there is also a link between HG and PTSD, which is largely undiagnosed. This was discovered after a five year analysis of new and expectant mothers conducted by Professor Medland.

Post-traumatic stress disorder (PTSD) often goes undiagnosed

Some women presenting with HG during pregnancy are also presenting with symptoms of PTSD related to that experience. However symptoms of PTSD can also arise from complications during pregnancy and birth, emergency C-sections, injuries that occur during the birth, or newborn admissions in the ICU.
While health care professionals tend to be very familiar with the symptoms of postnatal depression, they may not be as familiar with symptoms of less common mental health conditions.

‘The real gap is that health care professionals are not routinely screening for PTSD relating to pregnancy and birth,’ Associate Professor Lucía Colodro-Conde, co-lead investigator, said.

‘Sometimes a woman will show symptoms of a mental health condition, and will be screened for postnatal depression.

‘The problem is their symptoms don’t perfectly overlap with depression, and they do not get support when it’s needed,’ she said.

Pilot study for a PTSD screening test

Research shows PTSD related to pregnancy and birth occurs in about six per cent of new mothers.

Our researchers, together with clinicians from the Perinatal Mental Health service at the Metro North Hospital and Health Service (Metro North), are currently designing a screening test for PTSD related to giving birth and the many experiences of pregnancy, such as trying to conceive, severe nausea and vomiting, adjusting to parenthood, and problems experienced in postpartum.

‘At present, many of these women aren’t being diagnosed until they have been dealing with PTSD for a quite a long time,’ Professor Medland said.

‘If we can identify PTSD earlier, it’s easier to treat.’

Improving healthcare for new mothers

Collaborating with Metro North, the research team will be inviting women to participate in a study to screen for PTSD when they have their check-ups at the Redcliffe Hospital during pregnancy. Then, researchers from the perinatal mental health unit will follow-up with them after the birth of their child.

‘The aim is to develop and trial a screening test, consisting of a series of questions, which will successfully identify women presenting with PTSD symptoms earlier,’ Associate Professor Colodro-Conde said.

‘Mothers flagged as “at risk” will be offered further help to manage their symptoms with professionals from the perinatal mental health services at Metro North.

‘We really want to provide a screening questionnaire that is useful for health care professionals,’ she said.

If the screening questions prove successful, the aim would be to incorporate them into wider healthcare procedures and used by GPs, midwives, nurses, IVF clinics and researchers state-wide.

Professor Sarah Medland
Group Leader of the Psychiatric Genetics Laboratory at QIMR Berghofer

Associate Professor
Lucia Colodro-Conde
Senior Research Officer of the Psychiatric Genetics Laboratory at QIMR Berghofer
Devastating. Heartbreaking. Confusing. These are just some of the emotions faced following a miscarriage.

Senior Research Officer Dr Jodie Painter and the team in the Psychiatric Genetics Laboratory are at the forefront of discoveries into genetic traits that directly relate to miscarriage, and how this information can translate to better treatment of women who experience miscarriage.

Evelyn Harris* wishes this knowledge was available for women like her. At 91, the distress of her past miscarriages is still raw, real and challenging. It has been over 60 years since Evelyn experienced her first miscarriage. Unlike today, the treatment prescribed was simply, ‘go to bed and hope for the best’. With a young toddler, this was impossible. Evelyn suffered in silence, with no emotional support during or after her experiences.

It’s stories like these that continue to inspire Dr Painter to pursue this research.

‘Unfortunately, Evelyn’s story is very typical – particularly given the era she was having her miscarriages,’ she reflects.

‘Women probably receive a bit more support today, but we don’t really know much more about why women experience miscarriage.’

Having seen first-hand the lack of understanding, and often blame imposed on patients, Dr. Painter is clear about the changes she hopes to see. She is the passionate scientist Evelyn needed in the 1940s.

While we have come a long way in understanding the importance of emotional and physical support for women suffering miscarriages, there is still so far to go. Now, in 2019, Dr Painter’s goal is simple:

‘We need to find whether all these observational links to miscarriage have a genetic link. Once we achieve this, we need to get the knowledge out to the medical community,’ she said.

The impact of this research has the potential to drive a cultural shift in how we treat and support women. Even in situations where there is still no clear genetic reason, Dr Painter’s findings will give the medical community the tools to lift the blame from these women. Doctors will be able to say, ‘It’s not your fault. There is nothing you could have done’.

Evelyn knows first-hand the importance of this research and has generously remembered QIMR Berghofer in her Will to ensure her legacy plays a part in allowing women access to the treatment and support she was denied 60 years ago.

By leaving a gift in her Will, Evelyn is a member of The Bancroft Society, where she has access to our leading scientists to learn about the work she will be supporting.

For more information on leaving a gift in your Will, please contact the QIMR Berghofer team on thebancroftsociety@qimrberghofer.edu.au or 1800 993 000.

‘Evelyn’s surname has been changed to protect her privacy.'
Welcoming Associate Professor James Scott, Head of Mental Health Program

QIMR Berghofer welcomes highly regarded child and adolescent psychiatrist and researcher Associate Professor James Scott to lead the Institute’s Mental Health Program. Associate Professor Scott’s expertise will complement the existing strengths of the mental health program in neuro imaging, genetics and population health.

Associate Professor Scott has conducted extensive research into child and adolescent mental health, including bullying prevention, neuro-developmental disorders and early psychosis.

Associate Professor Scott juggles a heavy load, dividing his time between research and clinical practice.

His dedication to advancing treatment and psychological discovery over the past 10 years was recognised by the Royal Australian and New Zealand College of Psychiatrists (RANZP), awarding his work with the 2018 Senior Research Award.

Colouring for mindfulness

Colour yourself to calm with this life-meets-science cover illustration. Colouring pencils are included.

The concept of mindfulness colouring is that the very act of colouring a pre-drawn illustration provides an opportunity to calm the mind and assist with regulating our stress.

Researchers have discovered that colouring activities help relax the amygdala – the section of the brain that is activated in situations where you feel stressed or scared. Simultaneously, colouring activates the parts of the brain that support creativity.

Why not see how creative you can get, but remember to stay between the lines!
Landmark study debunks the myth that anorexia is all in the mind

Anorexia nervosa has the lowest survival rate of all mental illnesses. It’s long been recognised as a psychiatric disease, but a landmark study has found half of the genes linked to anorexia nervosa are connected with metabolism.

Scientists from QIMR Berghofer were part of the international team that identified eight genes associated with anorexia and were surprised to learn that four of these genes are connected with metabolism. These findings suggest that anorexia is more than a mental health problem — it’s also metabolic.

At QIMR Berghofer, we believe it’s not right that a young person with their whole lives ahead of them wastes away from anorexia. It is this knowledge that motivates and drives our researchers to do something about it: to find answers to this terrible disease that causes so much suffering to families in Queensland, Australia and abroad.

Findings from this study debunk the myth that the illness is all in the mind.

Senior Scientist and head of the QIMR Berghofer’s Genetic Epidemiology laboratory Professor Nick Martin said the finding was a surprise.

‘We hadn’t expected that at all — we thought it would be a completely psychiatric disease,’ he said.

Professor Martin said many researchers were caught off-guard by the new findings.

Up until now, Professor Martin said the focus of the disorder has been purely psychiatric.

‘It has been assumed that the obvious constant of anorexia – body size and metabolism – are all the flow-on effects of the psychiatric condition. But it seems it’s more complex than that,’ he said.

Eight genes have been identified after examining samples from almost 17 000 people worldwide with the illness, and 55 000 people without. These include genes for metabolism and those associated with low body fat and glycemic levels.

‘There’s still a myth, a misconception that people choose to have anorexia. That’s not true. People are deprived of control, and are more vulnerable, depending on their genes.’

Professor Martin says the findings will help reduce the stigma for patients and their families.
Through the eyes of a patient
Ms Bronte Langbroek, daughter of Queensland politician John-Paul Langbroek, is pleased these findings have started the conversation. She opened up on-air during her radio show to talk about her experience with anorexia, knowing that there are a lot of school-aged kids, currently living with the disease.

‘This study and these results are so relieving. I’m so happy this research is being done.’

-Ms Bronte Langbroek

‘Growing up, I always had a lot of issues with food and my body image, and at 15 years of age I suffered severely with anorexia,’ Ms Langbroek said.

‘It always felt like there was something beyond my mind and the environmental factors that was making me feel this way. People think you can get well if you can just snap out of it, which is just not true,’ she said.

Like any severe illness, it not only affects the patient, but the entire family, and Bronte recalls how tough it was for her family.

‘There is no way anyone would want to put their family through that if they could help it,’ she said.

‘This study helps explain the compulsion to starve yourself is not all in your mind. It has something to do with your body – the way it processes food and your genetics.’

Still recruiting for the study
Professor Martin is encouraging anyone who has lived with anorexia nervosa, bulimia or other eating disorders to sign up to the next stage of the study. Participants provide a saliva sample from which DNA can be extracted.

‘We’ve got the first eight genes, but we know there are hundreds more genes to find, and we can only do that by broadening the study and recruiting more participants,’ Professor Martin said.

‘I am hoping that this success will encourage other Australians living with eating disorders to volunteer to help us find the responsible genes.’

Those interested in taking part in the study should visit the website https://edgi.qimr.edu.au, or phone our toll-free number 1800 257 179.

We recommend people needing support and advice for eating disorders can contact The Butterfly Foundation on 1800 33 4673 or www.thebutterflyfoundation.org.au.
Iron is a nutrient that’s essential for the growth and development of infants and children. It is necessary for healthy red blood cells, which move oxygen from the lungs throughout the body.

Iron deficiency during development can leave a permanent, life-long burden. Not only does it stunt growth and leave the child with a lack of energy, but it can permanently impair brain function.

Dr David Frazer, Team Head of the Molecular Nutrition Laboratory, says people should be aware about having the right levels of iron for the stage of life that they are in. And specifically, women need quite high levels of iron before, during and after pregnancy.

‘If a woman starts a pregnancy while she has low levels of iron, it makes it exceedingly difficult to catch up,’ Dr Frazer said.

‘By the third trimester, an expectant mother simply cannot absorb enough iron to provide her growing infant. It would be impossible to get enough iron with a regular diet.’

During the third trimester of pregnancy, the baby loads with iron. In fact, a newborn baby has more iron per kilogram than an adult male! This ensures the baby has enough iron to last until it starts eating solid food, and taking iron in through their diet.

Data from the World Health Organization suggests that a woman should enter pregnancy with iron stores of at least 500mg, which equates to a serum ferritin of 60-70.

So, how can expectant mothers ensure their iron levels remain high?

Currently, there are iron supplements available, however they contain ferrous iron salts, a water soluble form of iron which can cause gastrointestinal problems in some people.
'Our aim is to develop a superior iron supplement that won’t create these adverse side effects in the body.'

-Dr David Frazer

Statistics show that 30 per cent of Australian children are on formula by one month of age.

‘The problem with ferrous iron supplements is they upset the balance of bacteria in the gut. Ferrous iron also allows toxic chemicals to form in our gut, contributing to the adverse side effects,’ he said.

‘There is also a large portion that is not absorbed, and this can remain in the colon long enough for detrimental bacteria to start to feed on this excess iron.’

With such uncomfortable side effects, many people stop taking them.

Dr Frazer and his team are working on developing better and safer supplements for both mother and child. The supplements take the form of nanoparticles, which mimics the digestion products of iron compounds found naturally in the diet, plus minimises side-effects and reduces the dose needed.

‘Our aim is to develop a superior iron supplement that won’t create these adverse side effects in the body,’ he said.

‘We’re currently collaborating with a commercial company to improve the ferrous iron supplements. We are seeing some great results from iron supplements that take a nanoparticulate form.’

‘We’ve identified this nanoparticulate, non-soluble form of iron is gentler on the gut and the microbiome.’

‘By designing a tablet delivering iron in a nanoparticulate form, we are making it safer.’

Similarly, the team is looking at upgrading the iron supplement used in baby formulas, to also take the form of a nanoparticulate material. Although a greatly debated topic, Dr Frazer explains why the industry needs a ‘one-size-fits-all’ solution.
The international study, led by QIMR Berghofer scientists, has found premature babies have different sleep patterns to babies born at full term.

Our Queensland-based researchers partnered with researchers in Finland to analyse a cohort of babies born prematurely at 27 weeks.

They found the premature babies had markedly different sleep patterns compared to a control group of babies, which were born at full term.

‘Babies born at full term undergo what’s called “quiet sleep” and “active sleep”, which is broadly equivalent to REM and non-REM sleep in adults,’ Dr Luca Cocchi, head of QIMR Berghofer’s Clinical Brain Networks team, said.

‘In contrast, that clear distinction between the two sleep states was not there for premature babies.’

The researchers used high-density electroencephalography (EEG) and other tools to map interactions between regions of the brain while a baby was in active sleep and quiet sleep.

Dr Cocchi said sleep was a critical indicator of brain health, but very little research had been done prior to this study on how sleep patterns in infancy effects brain development later in life.

About 1 in 10 babies born in Australia are considered premature, delivered before 37 weeks gestation.

Most babies born between 32 and 36 weeks do not have any serious health problems, but babies born before 32 weeks will likely need to be cared for in a neonatal intensive care unit.

Medical advances mean the vast majority of these babies now survive into adulthood, however the long-term health implications of being born very prematurely still aren’t well understood.

In particular, researchers would like to investigate the cognitive effects of abnormal sleep patterns found in these premature babies as they move into adolescence and adulthood.
What would you give to change the future of health?

‘You’re not supposed to lose your children before you.’

These are the sentiments of The Bancroft Society members Richard and Carole Szekely as they reflect on their inspiration behind leaving a legacy to QIMR Berghofer. They lost their son to an aggressive form of brain cancer when he was only 33-years-old.

We know this is not right. Together, we can make it right. Join us, as our researchers work to achieve a future where cancer can be cured, asthma is prevented, Alzheimer’s is treatable and malaria is eradicated.

You can make a positive difference by remembering QIMR Berghofer in your Will. A gift in your Will is your commitment to saving lives. Your support of medical research ultimately relieves the nation’s health concerns and brightens the future for so many.

By leaving a gift in your Will, you will be welcomed to The Bancroft Society. You will have access to our leading scientists to learn first-hand about the work you will be supporting.

We thank you for sharing our vision of a healthier future, for both this generation and the next.

For more information about leaving a gift in your Will, please contact the QIMR Berghofer team.

Email: thebancroftsociety@qimrberghofer.edu.au
Phone: 1800 993 000

‘After we lost our son, we wondered who we were going to give the money to when we die one day.

‘Over the years, we found out about legacy donations. We agreed it would be better to leave a donation to a cause that is close to our heart. We hope medical researchers find a cure one day, and that they can help save someone else’s life.’

- Carole and Richard Szekely
Leigh Martyn has been touched by cancer. She lost several close friends to cancer in 2009, after already suffering the loss of her father, step-father and best friend to the deadly disease. She founded Play for a Cure the following year.

Leigh has played a substantial role in Australian Softball for many years, having been a player, manager, coach or administrator. She had the vision to combine her passion and contacts in sport to create a foundation dedicated to fundraising for cancer research and patients.

And such, Play for a Cure Foundation was established, hosting sporting events that fundraise for cancer research. Softball, golf days and even 58 km marathons, their sporting scope is far-reaching.

Play for a Cure regularly host the Yellow Socks Softball Challenge, where sporting greats are invited to participate in a friendly game of softball. A few years ago they played against a star-studded line up of Brisbane Broncos legends, including Darren Lockyer and Gorden Tallis.

Leigh is passionate about progressing medical research.

‘When we asked our supporters what cancer research we should support, childhood cancers was the clear front-runner,’ Leigh said.

‘There is something about childhood cancers that cuts to the core, and we know brain cancer doesn’t get sufficient focus and funding.

‘Donating to QIMR Berghofer and Professor Bryan Day was an easy choice when we learned that 100 per cent of what we donate will go to Professor Day and his research. It’s extremely satisfying!’

Professor Day is sincerely grateful for Play for a Cure’s generous contribution to progress vital paediatric brain cancer research.

‘Brain cancer is a particularly nasty and aggressive disease, and unfortunately it has a poor prognosis,’ Professor Day said.
Bridge to Brisbane 2019

The QIMR Berghofer community took to the streets of Brisbane on Sunday 25 August as part of The Sunday Mail Bridge to Brisbane. With the aim of making it more than a fun run in the glorious morning sunshine, each participant raised funds to help us continue our life-saving medical research.

We had a great team of 45 participants in this year’s event, proudly wearing their QIMR Berghofer shirts, demonstrating their commitment to creating a healthier future.

Thank you to everyone who took part and got behind our team, including our wonderful QIMR Berghofer staff and their supporters. And a huge thank you to our corporate supporters and the teams from Dentons and Corrs Chambers Westgarth.

See you next year!