Melanoma
The diagnostic challenge
Understanding sun exposure
As we head into summer and the sun exposure that comes with it, we know it is vital to be sun-smart. More than 3,600 Queenslanders are diagnosed with melanoma every year.

Researchers at QIMR Berghofer are conducting the largest study ever on skin cancer, involving more than 40,000 participants. We have found that nearly a third of melanomas picked up during routine skin checks may not be harmful. This may lead to more accurate diagnosis which could save patients from the anxiety associated with a melanoma diagnosis.

Our researchers are also undertaking the first ever large trial to investigate the effects of applying sunscreen on vitamin D. The Sun-D Trial will provide evidence-based advice, arming people with the right information to enjoy the sun safely.

Medical research is absolutely vital to improve the health and wellbeing of people across Queensland and the world. Thank you for your amazing support, you are providing our researchers with the time and tools they need for this lifesaving work.

Professor Fabienne Mackay
Director and CEO
Contributors

Dr Athena Andreosso
Madeleine Rogers

Professor Rachel Neale
A/Prof Louisa Gordon

A/Prof Greg Devine
Professor David Whiteman

A/Prof Nic Waddell
John Pearson

Dr Miguel Renteria
Dr Brittany Mitchell

Dr Kyohei Nakamura
Professor Rajiv Khanna

A/Prof Severine Navarro
Mika Casey
Professor Adele Green

Contents

4 Melanoma, the diagnostic challenge
6 Understanding sun exposure
7 QIMR Berghofer skin cancer researchers enlisted to fight for sunbed ban in England
8 Breakthrough vaccine candidate to protect unborn babies
10 New tool to improve immunotherapies
12 Queensland ideally placed to investigate COVID immunity
13 New hope for migraine sufferers
14 Our People: Associate Professor Greg Devine
15 QIMR Berghofer clinical trials
16 New primary cause of shellfish allergy
18 Celebrating research success
19 Philanthropist Clive Berghofer recognised
 A future without dementia appeal
 Thank you!
Melanoma
The diagnostic challenge

Understanding Queensland’s cancer

IMR Berghofer researchers have found that nearly a third of melanomas picked up during routine skin checks may not be harmful. This finding may lead to more accurate diagnostic tools which might spare some patients from the anxiety associated with a melanoma diagnosis.

“Skin cancers are the commonest cancers affecting humans and people who live in Queensland have the highest rates of melanoma in the world,” Professor David Whiteman said.

Professor Whiteman, who led the study, said researchers followed a large group of Queenslanders over seven years. They found melanoma detections were significantly higher among the group who had their skin examined by a doctor before enrolment in the study.

“The results suggest that up to 29 per cent of the melanomas detected during skin checks may never have come to light if that person wasn’t screened,” Professor Whiteman said.

“It suggests that skin examinations and biopsies are picking up things that look and feel just like melanomas, but they don’t always behave like them or cause harm,” he said.

“Melanoma can be a very dangerous cancer. Our study does not lessen the importance of good prevention, screening and treatment at all. But it does open up some exciting research possibilities to improve diagnosis and treatment of the disease,” Professor Whiteman said.

The observational study is being published in the British Journal of Dermatology. It offers the first estimate of potential melanoma overdiagnosis using individual patient data.

“If researchers could address the issue by delivering improved diagnostic tools, it would benefit patients, doctors and the health system,” Professor Whiteman said.

“Patients diagnosed with melanoma have to live with the fact they have a potentially fatal cancer, and endure ongoing check-ups and scans. It’s a life-changing event,” he said.

“Fortunately, most people diagnosed with melanoma in Australia can expect an excellent prognosis, as doctors in this country are world leaders in the detection and treatment of this disease,” Professor Whiteman said.

“If we can find a way to distinguish the melanomas with a good prognosis from the very nasty melanomas, we might be able to offer patients better information about their condition and more appropriate treatment options,” Professor Whiteman said.

The research involved more than 40,000 participants from QIMR Berghofer’s QSkin project, the largest study ever conducted on skin cancer.

Cancer Council Australia recommends that people regularly examine their skin and consult a doctor if they notice any changes – such as a new spot or changes in the size, shape or colour of an existing spot.

Cancer Council Australia recommends that people regularly examine their skin and consult a doctor if they notice any changes – such as a new spot or changes in the size, shape or colour of an existing spot.
Skin Cancer

Early detection
The costs of treating melanoma and keratinocyte cancers are higher than for any other cancer in Australia. One approach to controlling the impact of melanoma is through early detection of tumours, before they have a chance to invade deeply and spread through the body. Another, is prevention. The best way to prevent melanoma is to stop skin cancer developing in the first place.

Prevention
Yvette D’Ath’s hairdresser spotted something on her scalp, and the Queensland Health Minister took immediate action to have it checked straight away.

It was a serious melanoma, and was removed as soon as possible.

“We know melanoma is the most dangerous cancer, we know Queensland leads the way when it comes to skin cancers with the highest rate of skin cancers in the world.”

Yvette D’Ath
Queensland Health Minister

To watch the video about our melanoma research, scan the QR code.
Australia is confused about how much time to spend in the sun and when to protect their skin. They need clear, consistent advice about sun exposure.

QIMR Berghofer’s Sun-D Trial is the first ever large trial to investigate the effect of routinely applying SPF 50+ sunscreen on vitamin D, a hormone essential for bone health and other health outcomes, which is largely generated in the skin through sun exposure.

“We know regular sunscreen use is vital for reducing the risk of skin cancer in Australia. We have the world’s highest rate of skin cancer with more than 15,000 people diagnosed with melanoma each year,” Professor Neale said.

“But lots of people are confused about how sunscreen will affect their vitamin D levels, and that causes them to either avoid sunscreen or spend too much time outdoors to try to get that balance,” she said.

“The Sun-D Trial will provide evidence-based advice so we can clear up confusion in the community and the medical profession, arming people with the right information to enjoy the sun safely,” Professor Neale said.

Of particular interest is participants from Victoria and Tasmania, the two Australian states with the highest prevalence of vitamin D deficiency.

“Residents in these states are still told to wear sunscreen on any day where the UV index is forecast to reach or exceed three – that’s actually most of the year.”

“We want to make sure this advice is not causing vitamin D deficiency in these states,” Professor Neale said.

Participants in the Sun-D Trial are randomly sorted into two groups. One group will be given free sunscreen to apply every day, while the other will continue with their usual sun protection behaviour.

Participants will complete short monthly surveys, and provide three blood samples over the course of the trial so researchers can measure their vitamin D.

To watch the video about our Sun-D study, scan the QR code:
Six years ago, two pioneering skin cancer experts, Associate Professor Louisa Gordon and Professor Adele Green from QIMR Berghofer, were at the forefront of the push to deliver an outright ban on commercial sunbeds in Australia. Now, they are helping to provide the case for a total ban in England.

Their research is helping demonstrate the economic case for banning sunbeds showing it would save millions of pounds, hundreds of lives, and prevent thousands of cases of skin cancer.

Britain isn’t known for its sunshine but more than 16,000 people are diagnosed with melanoma each year in the UK.

Associate Professor Gordon said a ban combined with a public information campaign would be a highly efficient use of healthcare resources.

“We know that exposure to the Ultraviolet (UV) radiation from sunbeds causes melanoma and other skin cancer. Using a sunbed increases the risk of having a melanoma by almost 60 percent. The health effects are so clear, but if that health evidence isn’t enough for policy makers, then it’s critical to prove the economic case for why a ban is needed, and the cost savings for the health system are very convincing,” Associate Professor Gordon said.

“The sunbed industry was in its infancy in Australia when the calls for a ban began. In England, the industry is established and profitable, so the challenge there is even greater now than what Australia faced,” Associate Professor Gordon said.

Commercial sunbeds are illegal for anyone under 18 years-old in England, but are popular among adults with 17 percent of women and 8 percent of men using them.

Completely banning sunbeds would send the message that using a sunbed to get a tan is just not worth it. Exposure to artificial sources of ultraviolet radiation is just as dangerous as too much time in the sun.

Australia, is one of only three countries in the world to have banned commercial sunbeds outright.
Cytomegalovirus research at QIMR Berghofer has led to a breakthrough vaccine candidate against the widespread but little-known virus, also known as CMV, which can cause severe disabilities among unborn babies.

CMV is a herpes virus which is carried by half the population, but the majority will never develop symptoms. A small proportion develop a glandular fever-like illness. However, in pregnant women, CMV is potentially dangerous for their unborn baby and may cause permanent hearing loss, cerebral palsy and even death. The virus is also dangerous for transplant patients due to their compromised immune system.

Development of a CMV vaccine has been a top priority of the US Institute of Medicine but so far, all attempts to produce a durable and effective CMV vaccine have failed.

QIMR Berghofer’s breakthrough represents a new approach. Professor Rajiv Khanna, coordinator of the Institute’s Centre for Immunotherapy and Vaccine Development, said previous attempts had failed because they relied on traditional technologies to develop antibodies which attach to and remove the virus.

“CMV is a very complex virus, one of the largest DNA viruses, and it can hide inside cells and escape immune control,” Professor Khanna explained.

“What we have done is to deploy another arm of the immune system, what we call Killer T-Cells, to attack those cells in which the virus is hiding.

“We are combining both humoral immunity and this killer cellular immunity into a single formulation,” Professor Khanna said.

Extensive preclinical testing of this bivalent vaccine has produced strong neutralising antibody and CMV-specific polyfunctional T cell responses. The QIMR Berghofer team has also successfully developed a process to produce the vaccine’s polyepitope protein. Professor Khanna’s work is published in PLOS Pathogens Journal.
President of CMV Australia, Kate Daly is the mother of twins, one of whom was left with serious disabilities caused by CMV.

“This is wonderful news that will hopefully one day save families from going through the heartache of learning that their baby’s disability was caused by a virus,” Kate said.

CMV is most commonly spread through saliva and other bodily fluids, and pregnant women are urged to be diligent about basic hygiene to minimise the chance of contracting the virus. These include not sharing utensils with young children and generally avoiding saliva contact with children.

Brisbane mother Miff Ward had also not heard of CMV until she learnt she was infected during her pregnancy. Her baby Azaria was born with permanent hearing loss.

“It was a really difficult and emotional time for us. Our first baby, going through all that excitement, and then halfway through for this to happen,” Miff said.

“We were lucky that the effects of CMV were not more severe considering what can happen. It’s surprising that there is so little awareness of such a common virus that can cause so much damage to an unborn baby.”

“I wouldn’t wish our experience on my worst enemy so I’m really excited to learn that a vaccine may be coming and other families won’t have to experience this,” Miff said.

CMV Support Group Celebrates Breakthrough

To watch the video about our cytomegalovirus research, scan the QR code to the left.
New tool to improve immunotherapies

A new type of immunotherapy called T cell engaging bispecific therapy has shown great potential for treating blood cancers and is already being widely tested in clinical trials. It acts like a missile control system by alerting and guiding the body’s own T cells to attack and eliminate blood cancer cells. However, it has remained unclear precisely how this process works.

Now research led by QIMR Berghofer cancer immunologist Dr Kyohei Nakamura has discovered that a much less common type of cell, known as iNKT cells, is like the key that turns on the missile control system enabling the immunotherapy to guide the T cells to destroy the cancer cells. By boosting the numbers of these iNKT cells, the immunotherapy is significantly more effective.

Dr Nakamura said the finding is a big step forward in the battle against blood cancers.

“Our research for the first time shows how important these iNKT cells are. And their critical role in boosting the efficacy of the T cell engaging bispecific therapy. We believe that this study fills in the gaps in our understanding of how the immune system is working during this therapy,” Dr Nakamura said.

QIMR Berghofer’s Mika Casey, the lead author of this new research, said “iNKT cells are scarce in the body. Numbers are even lower in cancer patients, although stimulating the number of iNKT cells can be achieved safely in cancer patients.”

The research involved collaboration with the Peter MacCallum Cancer Centre.

“T cell engaging bispecific therapy is an off-the-shelf way that we can direct a patient’s own immune system to kill myeloma and other cancer cells. This research increases our fundamental understanding of how T cell engaging bispecific therapy works and gives us a potential path to increase its effectiveness. We are working together to translate these findings into more effective therapies for patients,” said Professor Simon Harrison.

The study was funded by the Leukaemia Foundation of Australia (with generous support from the Estate of Madella Ann Hay) and the Play for a Cure Foundation.

The study has been published in Blood Advances, a journal of the American Society of Hematology.
About the Immune System

WHITE BLOOD CELL SOLDIERS

White blood cells are your immune system’s soldiers. They protect you against attack from bacteria, viruses and cancerous cells.

WHAT IS IMMUNOTHERAPY?

Immunotherapy uses the body’s own immune system to fight disease. Substances, such as proteins, are used to activate or suppress our immune system to recognise and work against diseased cells.

1. One group of immunotherapy treatments uses a type of white blood cell, known as a T cell, which is extracted from a blood sample.

2. Our scientists then grow and enhance the T cells in the laboratory (including the use of proteins to activate or suppress them).

3. The T cells are then infused back into the patient to fight cancer and other diseases.
Queensland ideally placed to investigate COVID immunity

A dult Queenslanders, whether COVID-19 vaccinated or not, are urged to volunteer for a landmark COVID-19 study aimed at unlocking genetic information to better manage COVID-19 vaccination strategies for the long term.

The state-wide Queensland Health-led study aims to determine why individuals have differing immune responses to:

- the various vaccines
- combinations of vaccines and
- the COVID virus itself.

QIMR Berghofer is analysing genome sequence data from study participants and searching for variations that may explain differing reactions to the vaccines and the virus, using the full data-crunching power of the Institute’s High Performance Computer, which was specifically designed for genomics analysis.

“We need Queenslanders to volunteer because we are the perfect population to determine if there is something in the individual’s immune system that dictates why they had serious reactions to a vaccine, or if they contracted COVID-19, why they did or did not have serious disease,” Dr Nic Waddell, leader of QIMR Berghofer’s Medical Genomics group said.

John Pearson, QIMR Berghofer’s Manager of Genome Informatics said, “Analysing the genome sequence of a person is a task 100,000 times bigger than analysing the genome sequence of the virus itself and understanding both is critical to our long term management of COVID-19,” John said.

The COVID-19 response has been the largest coordinated vaccination program in the world. The information gathered in this study will allow us to better understand how the vaccine may need to evolve to combat new variants and also determine who may need more health care to stay well with the virus.

To learn more about the study, scan the QR code to the right:
More effective treatments for people who suffer from debilitating migraine headaches are a step closer thanks to world-first genetic research into the causes of migraines.

A study led by QIMR Berghofer researchers Dr Brittany Mitchell and Dr Miguel Renteria, published in the journal Brain, has shown for the first time the genetic links between brain size and the risk of migraines.

“Our research found that a smaller brain size and smaller structures within the brain, such as the hippocampus and the amygdala, cause an increased risk of migraine, and that this might be due to shared biological pathways that affect neuronal signalling or the regulation of blood flow,” Dr Mitchell said.

“I know personally how debilitating migraines are because I suffer from them myself. Any step towards bringing relief to patients is always very exciting and positive,” Dr Mitchell said.

The research was made possible thanks to genetic data resulting from hundreds of thousands of participants from two multinational research collaborations - the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium and the International Headache Genetics Consortium (IHGC).

QIMR Berghofer genetic epidemiologist and senior author of the study, Dr Miguel Renteria, said the next step would be to further investigate the uncovered genes that are shared between brain structure and migraine risk and to also investigate if these genes are responsible for the differences in migraine risk between women and men.

“For the first time we can see some of the genes that influence brain size can also increase migraine risk. This is in turn likely due to vascular regulation. We now want to study these shared genetic pathways to work out whether increasing blood flow, for example, could reduce migraine risk thereby opening up new possibilities for treatments,” Dr Renteria said.

“Migraine is a difficult disorder to treat so it’s very exciting that our research has delivered a better understanding of the biology of migraine which we hope will lead to more effective treatments.”

Dr Brittany Mitchell

Around one in four Australians are affected by migraines, experiencing symptoms such as severe and prolonged headaches, nausea, vomiting, sensitivity to light and sound, and brain fog. Symptoms can last from a few hours to weeks and even months. Women are twice as likely to be affected.
With summer coming and another wet season predicted, in your area of expertise, what can people do to prepare?

Climate and ecosystem change are increasing the burden of some mosquito-borne diseases, but predicting specific incidence patterns is difficult. What we do know is that climate heating, extreme weather events and the constant global movement of invasive mosquitoes and viraemic humans and other animals will change the dynamics of mosquito-borne disease transmission.

The only way to avoid mosquito-borne diseases like Ross River virus and Japanese Encephalitis is to avoid being bitten by mosquitoes. When mozzies are active, wear long trousers and sleeves, cover your feet and wear plenty of repellent. If possible, screen your house.

Japanese encephalitis virus (JEV) was in the media several months ago. What disease impact could there be from all the wet summers?

JEV had a massive range expansion in Australia during the end of 2021 and the initial months of 2022. It’s likely that the temporary wetlands caused by La Nina changed the migration patterns of waterbirds (which are the major maintenance reservoir for the virus) and encouraged the rapid increase of Australia’s major JEV vector (transmitter), Culex annulirostris. Pigs are one of the major amplifying hosts for JEV and where those wetlands were in proximity to pig farms, those piggeries became major sources of blood for the mozzies, and that probably led to onward transmission to people. Feral pigs are also infected. The virus is here to stay and it’s very likely it will re-emerge this summer. La Nina and the negative Indian Ocean dipole will continue to ensure high rainfall during 2022 / 2023. If there’s a major outbreak, it is likely that there will be another vaccine shortage.

What is one of your ‘big predictions’ for your field in the next 10 years?

The Australian JEV outbreak in 2022, the Zika pandemic (2015-2016), the emergence of chikungunya (2004-present), the re-emergence of Yellow Fever in Brazil (2016-2018) and the spread of West Nile Virus in Europe (2010- present) and North America (1999- present) remind us that the next public health emergency may be mosquito-borne. Understanding and tackling emerging mosquito-borne diseases, when there are so few vaccines or drugs available, will require a multidisciplinary approach that involves vector biologists, arbovirologists, ecologists, clinicians and veterinarians.
New health interventions require rigorous testing through clinical trials to ensure they are safe, effective and improve the lives of patients.

Infection & Inflammation
- A Phase 1 study to characterise the transmission of an in vitro expanded Plasmodium falciparum (malaria) 3D7-MBE008 master cell bank in healthy subjects (not yet recruiting)
- A phase 1b study to evaluate the blood stage antimalarial activity of a single oral dose of tafenoquine in healthy subjects experimentally infected with Plasmodium falciparum
- A randomised, double blind, placebo controlled trial to evaluate the safety, tolerability and anti-parasitic immunity boosting activity of Ruxolitinib when co-administered with arteether-lumefantrine in healthy volunteers with Plasmodium falciparum induced Blood Stage Malaria
- Phase I open-label clinical trial of allogeneic SARS-CoV-2-specific T cells for patients at risk of severe COVID-19 (not yet recruiting)
- Phase I open-label clinical trial of allogeneic multi-virus-specific T cells for the treatment of viral complications in transplant recipients
- Phase I clinical trial of adoptive transfer of multi-virus-specific T cells into TCRαβ+/CD19+-depleted haploidentical HSCT recipients

Mental Health & Neuroscience
- Pilot and Feasibility RCT of a cognitive behavioural family intervention for reducing bullying victimisation and mental illness of adolescents
- Dose finding clinical trial of sodium benzoate in people living with treatment refractory schizophrenia
- Restoring the function of brain networks in Obsessive-Compulsive Disorders using non-invasive brain stimulation
- PARTING: Psilocybin-Assisted suppoRtive psychoTherapy IN the treatment of complicated Grief feasibility trial (not yet recruiting)
- Prospective Imaging Study of Ageing (PISA)

Cancer Research
- PROMISE: Patient Reported Outcome Measures in cancer care: a hybrid effectiveness-implementation trial to optimise Symptom control and health service Experience
- PRoCESS: Pancreatic cancer Relatives Counselling and Education Support Service trial. Assessing the effect of nurse-led counselling, compared with information alone, on participant-reported outcomes and use of medical services

Population Health
- The Sun-D Trial: the effect of high SPF sunscreen application on vitamin D
- The D-Health Trial – the largest trial of its kind to study the relationship between vitamin D and respiratory infection
- THYroid Replacement Options for Primary Hypothyroidism: - A Pilot Study

If you’re interested in participating in any of the trials, please visit https://www.qimrberghofer.edu.au/our-research/participate/ for further information.
What foods often cause allergies?
- Fish/seafood
- Sesame
- Cow’s milk
- Eggs
- Wheat
- Soy
- Nuts (especially peanuts)

Source: Queensland Government

New primary cause of Shellfish Allergy

With summer time just around the corner, for many people this means seafood time! Researchers have discovered a new primary cause of shellfish allergy which could lead to better testing and diagnosis of potentially life threatening food allergies.

Prawns and other crustaceans like crayfish, crab, and lobster, and even some insects like dust mites, spiders and scorpions are all capable of triggering an allergic reaction.

Now scientists from QIMR Berghofer and James Cook University have shown for the first time that a protein found in molluscs, including abalone, clams, scallops, oysters, and even octopus and snails, can also independently cause food allergy.

Associate Professor Severine Navarro from QIMR Berghofer said the discovery of this new primary cause of shellfish allergy is important to better inform people about food allergies.

“These findings could improve the diagnosis of shellfish allergy and prevent people with potentially life threatening food allergies from slipping through the cracks,” Associate Professor Navarro said.

“Shellfish allergy is usually diagnosed by a skin test which can be inaccurate. We have shown that molluscs can also be a primary cause of the allergy. Patients may show up as negative to shellfish allergy in testing, when they are actually allergic, just to a different species. Our findings mean we need to revise how we’re diagnosing food allergy to include molluscs,” she said.

Shellfish allergy most commonly affects teenagers and adults. Reactions range from mild, like hives, to potentially life-threatening in the form of breathing difficulties and anaphylactic shock. Avoiding certain foods is the main way to prevent a reaction, but identifying which foods are causing the problem often involves a long process of slowly introducing a food and then monitoring symptoms.

QIMR Berghofer’s Dr Athena Andreosso and PhD student Madeleine Rogers have now developed a new method to isolate and purify tropomyosin from shellfish (the protein responsible for initiating the allergic response). Purchasing purified tropomyosin commercially is extremely challenging making it difficult to include in allergy screenings (skin prick tests). The team is now developing this method for other shellfish species in the hope to improve food allergy diagnosis.
Tropomyosin, a protein in the seafood triggers the allergic response by binding to immune cells called mast cells.

The mast cells release histamines and prostaglandins, which cause anaphylactic symptoms, rash/topical skin reactions and stomach upset.
Congratulations to Professor Nick Martin who has been honoured with an International Society of Psychiatric Genetics (ISPG) award. The ISPG Honorific Awards are the Society’s most prestigious recognising significant contributions to the field of psychiatric genetics. Professor Martin was one of only two researchers to receive the The Ming Tsuang Lifetime Achievement Award for the advancement of the field of Psychiatric Genetics.

Associate Professor Tracy O’Mara from QIMR Berghofer has been recognised for her achievements with a 2022 Queensland Young Tall Poppy Science Award. The Australian Institute of Policy and Science Tall Poppy Science Awards recognise researchers for their commitment to communicating science and its importance to the community. The highly coveted Awards are widely considered to be an early indicator of Australia’s future scientific leaders, identifying excellent early career scientists.

IMR Berghofer scientist Professor Sarah Medland OAM has been elected a Fellow of the Australian Academy of Science in honour of her outstanding contribution to science, including her work helping to unravel the mysteries of the brain.

Among a long list of achievements, Professor Medland co-founded the ENIGMA brain imaging consortium which has transformed neuroimaging research globally, and now includes more than 1,000 researchers from 43 countries. She also leads projects examining the impact that genetics has in mental health conditions and works on a range of disorders including depression, bipolar disorder and ADHD.
We are most grateful to Queensland philanthropist Clive Berghofer AM for his steadfast support, helping to fund crucial projects at the Institute. In July Clive was inducted into the Queensland Business Leaders Hall of Fame. When asked what he would like to be remembered for, Clive responded, “Well probably QIMR is the biggest, but it excites me that I’ve left a trail of goodwill behind me that I can be proud of. I’m remembered as a guy who helped people.”

A future without dementia appeal

Thank you!

Our heartfelt thank you for your generous support of the QIMR Berghofer Tax Appeal, which showcased the incredible work of dementia researcher Associate Professor Tony White and his team.

Dementia is the second leading cause of death of Australians and most of us will not escape this disease, either knowing someone who is living with dementia, supporting a loved one, or being diagnosed with it.

Your amazing support is helping us to progress vital medical research aimed at improving treatment options for this devastating disease, and many others.

We are deeply grateful for your continued support.
Your next wild adventure could help us create a healthier, more hopeful world!

Turn your next hike, trail ride or bull ride into a fundraiser for QIMR Berghofer and help support our mission of better health through impactful medical research.

Jan Brown and the Bowen community sell their clever merchandise at the rodeo and other local events, saying “Buck off Melanoma” and raising awareness of the heightened cancer risk in far north Queensland.

“The team of fundraisers and researchers at QIMR Berghofer support our cause 100%, sharing with us everything we need to know to help educate and raise awareness. They also support and comfort me through the toughest of times.”

Jan Brown, Buck Off Melanoma

Photo provided by Chloe Smith