Breastfeeding Bonus
Researchers find link between breastfeeding and lower cancer risk
A note from the Director

I hope you are enjoying the new look of QIMR Berghofer’s research newsletter LifeLab, as we share more updates with you from within our four pillars of research: Cancer, Mental Health, Infectious Diseases and Chronic Disorders. As we are now including even more research news, and information about diseases, collaborations and community events, we’ve happily had to increase our page count, which means you are now receiving LifeLab as a flat mailing, with an eco-friendly plastic wrap.

Thank you to all those who kindly responded to our recent supporter and LifeLab reader surveys. We appreciate the thoughtful feedback, and will work hard to continue to implement your suggestions. One such example is this ‘bumper’ issue of LifeLab, as many of you requested that we deliver more research news and more information about diseases and conditions we study.

We couldn’t have achieved the research progress within these pages without your support and generosity. Thank you for partnering with us as we create the Future of Health.

Professor Frank Gannon
Director and CEO

Supporter Survey winners

Congratulations to Mr and Mrs Weston, winners of the Supporter Survey 2017 draw. They have won a year’s subscription to a magazine of their choice.

Mr and Mrs Weston have been loyal supporters of QIMR Berghofer since 1993. Thank you for your continued support!

A note on our new packaging

Your LifeLab Issue 96 was delivered in ‘EcoPure™’ plastic wrapping and is 100% biodegradable. The paper is FSC certified.

We are committed to seeking improvements that foster a sustainable future and incorporate our mission of better health through medical research.

SIGN UP!

Keep abreast of the latest news from QIMR Berghofer by receiving LifeLab in your inbox or mailbox.
Simply visit www.qimrberghofer.edu.au/newsletter
Researchers have created a synthetic Zika virus in the laboratory. The breakthrough will help scientists to better understand the virus and the foetal brain defects it causes.

It is the first time Zika has been made directly from a viral sequence obtained from analysing infected tissue without the need to import infectious virus isolates from overseas.

The study involved Professor Andreas Suhrbier from QIMR Berghofer and Professor Alexander Khromykh from UQ’s School of Chemistry and Molecular Biosciences.

A recent outbreak of Zika affected millions of people in the Americas, Asia and the Pacific.

While it is usually a mild virus, in pregnant women it would appear able to cross the placenta and infect the brains of unborn babies. This infection results in ‘congenital Zika syndrome’, which involves a series of neurological abnormalities, at worst microcephaly, (a condition where babies are born with abnormally small heads). The team found the synthesised virus they created could be transmitted by mosquitoes and that it would induce microcephaly in pregnant mice.

Professor Andreas Suhrbier, from QIMR Berghofer’s Inflammation Biology laboratory, said the research team’s unique approach allowed rapid generation of new fully functional Zika viruses.

‘Zika appears to have mutated to become a major international concern,’ Professor Suhrbier said.

‘Global efforts are underway to understand what mutations are responsible for ‘congenital Zika syndrome’.

‘Being able to make viruses in the lab with and without specific mutations will greatly accelerate this research’.

‘Queensland is home to two of the mosquito species that are believed to transmit Zika so it is fitting that we should be fully engaged in research into this insidious disease.’
The Zika virus is concentrated in the salivary glands of the *Aedes aegypti* mosquito.

Areas with a high risk of Zika infection. In these areas, mosquitoes that can spread Zika usually live at altitudes above 1981 metres.

Source: Center for Disease Control, 2017.

How is a Zika virus created in the laboratory?

1. **RNA fragments covering the viral sequence are synthesised.**
2. They are combined by a circular polymerase reaction (CPER).
3. The products are inserted into a cell.
4. The viral genome is replicated in the cytoplasm of the cell.
5. Viruses are assembled in the cytoplasm of the cell.
6. A new virus is borne.
Researchers from QIMR Berghofer are working to develop a new treatment which they believe could extend the lives of patients with aggressive breast cancer.

The scientists are also working on a genetic test that would ensure the treatment was only given to patients that would benefit from it.

Dr Jason Lee from QIMR Berghofer’s Control of Gene Expression research group said the treatment targeted the molecule G9a.

‘G9a is a molecule that promotes tumour growth. When conditions are normal inside the body, a change occurs to this molecule and it breaks down, making it harmless,’ Dr Lee said.

‘But we have discovered that, inside a tumour where there is very little oxygen, that change doesn’t occur to the molecule, meaning it doesn’t break down and instead starts to accumulate.

‘This accumulation of the molecule G9a then makes the tumour grow more aggressively.’

Dr Lee said the team had also found that G9a silences certain genes.

‘We don’t yet know what these genes control but we found that, when they are switched on, patients tend to have better survival rates and, when they’re switched off, patient survival tends to be worse.

‘In other words, these genes are predictors of whether patients are likely to experience a recurrence of their cancer.’

Professor Frank Gannon said, when the group tested an experimental drug that targets G9a, they found tumour growth more than halved.

‘We are now working with international collaborators to develop a similar, but more stable, drug that would be suitable for human use,’ Professor Gannon said.

‘The experimental drug we tested appeared to be effective in all types of breast cancer but particularly in estrogen-receptor-positive (ER+) breast cancer, which is the most common form. While most of these patients respond well to treatment, about a quarter develop resistance to the treatment they receive.

‘We hope that, in future, we will be able to test patients for the genes controlled by G9a to determine which patients are likely to experience a relapse and need further treatment.'
‘Only those patients would then receive the treatment, which would be more cost-effective and save patients from unnecessary drugs.’

Dr Lee said experiments had shown the treatment could also be effective for other cancers.

‘So far, we’ve tested the efficacy of the drug in breast, ovarian, melanoma, head and neck, and lung cancers and it seems to be having very positive results there. We would also like to extend our research to looking into some of the rare cancers as well,’ he said.

‘In our laboratory experiments, we can usually see the effect of the drug within a week of treatment. But, when we extend the treatment for two or three weeks, that’s when we see the tumours shrink to about half their size.

‘I feel very excited and hopeful about this discovery because we’ve been pushing towards this for several years now. My dream would be to see the treatment we’re developing approved for use in patients.’

Brothers Reid Touchdown

Join us in celebrating QIMR Berghofer fundraisers Dylan and Lawson Reid, as they return home from their round-the-world motorbike adventure, which helped raise much needed funds for QIMR Berghofer’s research into depression.

We will celebrate Dylan and Lawson’s return at QIMR Berghofer, 300 Herston Road, Herston on World Mental Health Day, Tuesday 10 October 2017 at 10am.

Please join us in giving the boys a warm homecoming. For more information, please visit our website at qimrberghofer.edu.au

Tiny Worlds

Sometimes it’s the little things that make all the difference.

QIMR Berghofer had the pleasure of exhibiting a series of our microscopic images and illustrations in the Queensland Museum Whale Mall throughout August.

Although the exhibition has now finished, you can still see just how small, yet how large, the world can be under the microscope by exploring the collection online: qimrberghofer.edu.au/tinyworlds
QIMR Berghofer scientists have unlocked the secrets of a little-understood immune cell, potentially paving the way for an easier way to treat and prevent graft-versus-host disease (GVHD).

GVHD occurs in up to 70 per cent of patients who receive a stem cell transplant to treat leukaemia and other blood cancers. It is caused by donated immune cells (called T cells) attacking tissue in the recipient’s skin, gastrointestinal tract, liver or lungs. A significant proportion of patients who develop acute GVHD of the gastrointestinal tract do not survive.

QIMR Berghofer Senior Scientist Professor Geoff Hill and his team have discovered that a particular type of T cell known as a type 1 regulatory T cell, or TR1 cell, plays a crucial role in fighting GVHD. Importantly, they have also discovered the protein that causes these cells to develop, allowing them to produce TR1 cells in large numbers in the laboratory.

Professor Hill said that TR1 cells and another type of immune cell, known as a FoxP3 regulatory T cell, were both responsible for keeping a check on the body’s immune responses and preventing them from causing harm.

‘These two types of cells are particularly important for stem cell transplant recipients because they stop the donor cells from mounting an immune response against normal tissues,’ Professor Hill said.

In most people, FoxP3 regulatory T cells are more important and exist in much higher numbers than TR1 cells. But, in this study, we found that TR1 cells are very important in stem cell transplantation.

‘Patients with GVHD stop being able to make FoxP3 regulatory T cells and, therefore, have very low numbers of them. However, we found that, when their levels decline, TR1 cells increase in number and become critical in stopping donor cells from attacking host tissues.

‘In other words, TR1 cells compensate when FoxP3 regulatory T cells either fail or can’t be made.’

Professor Hill said the researchers had also identified the particular protein that controls the development of TR1 cells.

‘This means we’ve been able to generate these cells in the laboratory,’ he said.

‘Now that we understand what these cells do and can produce them, we hope to be able to give them to stem cell transplant patients to prevent GVHD.

‘We hope that, by giving patients infusions of these cells early on, we will eventually be able to prevent GVHD altogether.’

What is GVHD?

GVHD is a medical complication following the receipt of transplanted tissue, when immune cells within the tissue graft reject the host. GVHD is commonly associated with stem cell transplant (bone marrow transplant).
Women have the edge on reading faces and minds

An international study involving researchers from QIMR Berghofer has confirmed that women are better at reading another person’s thoughts and emotions by looking only at their eyes.

The group also found that our genes influence this skill.

The study was a collaboration between QIMR Berghofer, the University of Cambridge and researchers from France, the Netherlands and the United States. The team assessed 89,000 people from across the world using a cognitive empathy test developed by University of Cambridge researchers in 2001.

Dr Katrina Grasby, from QIMR Berghofer’s Psychiatric Genetics research group, said the test asked participants to identify what thoughts or emotions actors were experiencing by looking at photos solely of their eyes.

‘This test is designed to measure cognitive empathy, which is a person’s ability to make inferences about what another person might be feeling. This skill, of course, is quite important for our social functioning,’ Dr Grasby said.

‘Cognitive empathy is different to what we generally mean by empathy, which is more about whether or not a person cares about how another person is feeling.’

Scientists have found previously that women, on average, score better on the test than men.

In this study, the researchers confirmed that finding. They also identified a genetic region on chromosome 3 in women that influenced their ability to read a person’s thoughts and emotions from their eyes.

Interestingly, the researchers found that men’s performance on the test was not associated with the same genetic region on chromosome 3.

‘This study confirms that cognitive empathy – or understanding another person’s mental state – is influenced by our genetic makeup,’ Dr Grasby said.

‘In short, we don’t know exactly why women are generally better at this skill than men. However, this study suggests that our genes could be one part of the puzzle.

‘It’s important to point out that our genetic makeup doesn’t set in stone what a person’s level of cognitive empathy will be. This skill is going to be influenced by a number of different factors, including many different genetic and social influences.’

Dr Grasby said identifying genetic regions that influenced empathy could, in future, help to guide research into the underpinnings of complex psychological disorders, such as autism.

‘Discovering this genetic region in women is like finding a door into a maze, which will eventually lead us to understand how this discovery will actually play out within our biology, within our brain. It’s a huge journey yet to undertake.’

A collaborative effort

QIMR Berghofer is growing its cross-city, national and global collaborations significantly, forming alliances with health partners, hospitals, universities, industries and other research institutes. Alliances like these help us accelerate the translation of research to the clinic.
What is your field of medical research?

My research is primarily focussed on human immunology with a special emphasis on immunotherapy treatments for cancer and infectious complications.

Can you tell us about a project you're working on at the moment?

We have multiple projects focussing on developing immunotherapy for brain and head and neck cancers. We are also developing immunotherapy for transplant patients who develop infectious complications after organ or stem cell transplants.

How did you end up in science?

My interest in science started when I was in high school. I always found biological and chemical sciences fascinating. During my postgraduate studies, I had an opportunity to work with a leading immunologist who really inspired me to work in the field of immunology. I was also very fortunate to have an amazing mentor for my PhD studies who was very passionate about translational medical research.

You came to Australia from India in 1989. What made you decide to emigrate?

Many of my fellow colleagues who studied in India preferred to do their post-doctoral training in North America or Europe. While looking for post-doctoral positions in Canada and the United States, my wife (QIMR Berghofer scientist, Professor Kum Kum Khanna), received an offer of a position at the University of Adelaide. While Australia was not our original choice of destination, I believe we made the correct decision. Most importantly, they play cricket here, which I can’t miss, especially the Australia-India test match series.

You were recently appointed an Officer of the Order of Australia in the Queen’s Birthday Honours list for your services to medical research. Was that a career highlight?

Yes, absolutely. However, I also rate our breakthroughs in developing new immunotherapies for cancer patients very highly. When you meet patients who have benefitted from the immunotherapy treatments developed by our team, there is a unique feeling of satisfaction which is much bigger than any award or recognition.

Were you surprised by the amount of interest and attention the award generated in India?

Yes, this was a pleasant surprise. I have received many messages from India, including from my boarding school teachers who have now invited me later this year to attend an Old Boys Meet. I was able to connect with many of my old batch of mates from my school who read the news about the AO award in Indian newspapers. I understand this news was published in more than 10 different regional newspapers, in addition to English language print and electronic media.

What do you like about working at QIMR Berghofer?

Tradition, passion and excellence are three unique features which drive medical research at QIMR Berghofer. I have been very fortunate to work with some amazing colleagues over the last 26 years, whose contributions towards QIMR Berghofer’s immunotherapy program have been absolutely crucial for the success we have achieved so far. We have world-class facilities to conduct ground-breaking translational research, which are available only in very few institutes around the world.

What do you hope to have achieved by the time you retire?

I would like to see the immunotherapy technology developed by our group become available for all patients worldwide.

When you have a couple of hours free, how do you pass the time?

I enjoy listening to ABC radio (especially Radio National and News Radio). Of course, if I have some time, I also like to watch the cricket test series (India vs Australia)!
Empowering the immune system to fight cancer

Professor Khanna’s clinical trial targets the malignant cancer glioblastoma, which is one of the most difficult cancers to treat, and he has also developed a new immunotherapy treatment, currently in clinical trials in Australia and internationally, for head and neck cancer.

What’s involved in the trial?

1. Enrolling
 Enrolling of patients and trial preparation

2. Collecting and manufacturing
 Collection of blood and manufacture of T cell therapy

3. Thawing and preparation
 Thawing of cells and transportation of therapy to the collaborating hospital

4. Infusion
 T cell infusions and post-infusion safety monitoring

5. Monitoring
 Safety assessments, MRI scans, blood collection

‘We have world-class facilities to conduct ground-breaking translational research, which are available only in very few institutes around the world.’
BREASTFEEDING BONUS

Study finds best evidence yet of a link between breastfeeding and a lower risk of uterine cancer

An international study led by QIMR Berghofer has found that women who have breastfed at least one child have a lower risk of cancer of the uterus.

Uterine cancer, which is also known as endometrial cancer, is the fifth most common cancer in Australian women. Rates have been increasing over recent decades. Cancer Australia estimates that nearly 2900 new cases will be diagnosed this year.

QIMR Berghofer’s Dr Susan Jordan and her colleagues examined data from more than 26,000 women worldwide who had at least one child. That included nearly 9000 women with uterine cancer.

‘We found that, on average, women who had breastfed a child had an 11 per cent lower risk of developing uterine cancer than women who had never breastfed,’ Dr Jordan said.

‘We then delved a bit deeper to find out how much a woman’s risk decreased depending on how many children she had breastfed and how long she had nursed each child for.

‘We found that longer episodes of breastfeeding per child were associated with lower risks of uterine cancer, up until about nine months when the reduction in risk plateaued.’

The team found that, when women breastfed for between three and six months, their risk dropped by about seven per cent for each child nursed, compared to women who hadn’t breastfed their children. And when women breastfed for between six and nine months, their risk dropped by 11 per cent for each child they nursed.

‘This means that a woman who breastfed two children for nine months each could have a 22 per cent lower risk of uterine cancer than a woman who had never breastfed her children’, Dr Jordan said.

‘Interestingly though, when we looked at the different age groups in our study, we found that, in women born before 1950, the reduction in cancer risk from breastfeeding was less pronounced.

‘One possible explanation for this is that the protective effect of nursing babies diminishes over time. Or it could also be that breastfeeding practices have changed over time, causing different physiological effects on the uterus.’

The study is the largest and most comprehensive to be conducted into the link between breastfeeding and uterine cancer.

Numerous studies have identified a link between breastfeeding and decreased risk of breast cancer. However, previous studies into the relationship between breastfeeding and uterine cancer have had conflicting and inconclusive findings.
On the basis of this study, we can now confirm that there is a link between breastfeeding and decreased risk of uterine cancer,” Dr Jordan said.

We can’t say that this is definitely a causal relationship. However, it is plausible that breastfeeding could directly reduce the risk because it can stop ovulation and reduce estrogen levels, which in turn could reduce cell division in the lining of the uterus.

It is important to point out that breastfeeding doesn’t guarantee a woman won’t develop cancer of the uterus and, conversely, not breastfeeding doesn’t mean a woman will get uterine cancer.

However, this study strongly suggests that breastfeeding reduces a woman’s risk. It’s already well known that breastfeeding has lots of great benefits for mums and their babies. This is just one more benefit to add to the list.’

Do you remember Sid the Seagull and his iconic cry of Slip-Slop-Slap? It was one of the most successful public health programs introduced across Australia.

But, did you know that QIMR Berghofer helped pave the way for this popular sun-safety campaign?

In 1986, Adele Green, an epidemiologist with QIMR Berghofer developed a world first project to study the community of Nambour and their risk of developing skin cancers.

‘Letters were sent, using the electoral roll, inviting participation and people were so excited,’ recalled a member of Adele’s team. ‘Everything was paper-based, there was no computer then. Photos were taken of hands and faces and we’d take silicone imprints of the backs of hands too. What a messy process that was!’

This forward-thinking research led to the most extensive population study of skin cancer spanning 20 years and helped confirm the effectiveness of regular sunscreen use in minimising the most common skin cancers.

Adele stresses, ‘We may have started with a local view of disease but our view is very much global.’

And we still have Sid the Seagull helpfully reminding us, with a couple of new additions to ‘Slip, Slop, Slap, Seek and Slide’ across Australia and his counterparts in New Zealand, Canada and Britain.
Smoking gun identified in squamous cell carcinoma investigation

QIMR Berghofer researchers have found smokers are significantly more likely to develop a common form of skin cancer.

The findings are the strongest evidence yet of a link between smoking and squamous cell carcinoma (SCC) of the skin.

Professor David Whiteman and his team are leading QSkin, which is the world’s largest study of skin cancer. As part of that investigation, they examined data from nearly 19,000 Caucasian Queenslanders aged between 40 and 69 who had never been diagnosed with a skin cancer. Ten per cent of the group were current smokers, 35 per cent were former smokers and 55 per cent had never smoked.

The researchers tracked how many common skin cancers the group developed over three years.

‘We found that current smokers were two-and-a-half times more likely to develop an SCC than former smokers or people who had never smoked,’ Professor Whiteman said.

‘We also found that, among the smokers and former smokers, their risk of skin cancer wasn’t affected by how long they’d smoked for, how heavily they’d smoked or the length of time since they’d quit.

‘We don’t yet understand how smoking might increase the risk of SCC but these findings strongly suggest that, by quitting, smokers are lowering their risk of SCC to the same level as someone who has never smoked. This is another very good reason to quit.

‘Interestingly, we didn’t find that smokers were at higher risk of basal cell carcinoma, or BCC, which is the other common form of skin cancer.

SCCs and BCCs are the most common forms of cancer worldwide. SCCs are generally more serious than BCCs.

While exposure to the sun is the biggest risk factor for developing these common skin cancers the findings indicate that smoking could also play a role in the development of SCCs.

It is the most comprehensive and highest-quality study that’s been conducted into the link between smoking and skin cancer.

A number of previous studies have examined the relationship between smoking and common skin cancers but the findings have been conflicting and inconclusive.

‘Unlike previous studies, we controlled for a range of established risk factors including skin colour and history of sun exposure,’ Professor Whiteman said.

‘A consensus is starting to emerge that smoking has different effects on the risk of developing SCCs and BCCs. However, we need to do more research to find out why that is the case.’

The study has been published in the Journal of Investigative Dermatology.
A landmark global study has confirmed that not all melanomas are caused by the sun.

Researchers from QIMR Berghofer and Melanoma Institute Australia led the research, which found that melanomas on the palms of hands and soles of feet (known as acral) and on internal surfaces (mucosal) are not caused by ultraviolet (UV) radiation.

This is in contrast to melanoma of the skin (cutaneous melanoma), which is the most common form of melanoma in Australia and is strongly linked to UV radiation.

Every year in Australia, up to 420 people are diagnosed with acral or mucosal melanomas. They affect people from all ethnic backgrounds and are the most common forms of melanoma in people with very dark skin. These forms of melanoma often behave more aggressively, are harder to diagnose and have a poorer outcome compared to cutaneous melanoma.

The study is by far the largest and most comprehensive genetic analysis of melanoma ever conducted. The researchers examined the entire DNA sequence of three different sub-types of melanoma, which provided 50 times more information than previous studies.

The head of QIMR Berghofer’s Oncogenomics Laboratory, Professor Nick Hayward, said the team sequenced the genomes of melanomas and matched healthy cells from 183 patients.

‘This allowed us to compare the melanomas to the healthy cells to determine what were the genetic mutations that led to the different types of melanomas forming,’ Professor Hayward said.

‘We found the mutations that led to acral and mucosal melanomas were caused by chromosomes breaking and rearranging themselves, rather than UV light. We think that these chromosomal changes could be caused by a person’s genetic makeup or could be chance.

‘Acral and mucosal melanomas occur all over the world but they have been even more challenging to treat than skin melanoma.

‘Importantly, now that we have identified some of the genetic drivers of these rare forms of melanoma, new and more targeted treatments can start to be developed.’
Introducing The Queensland Genomics Health Alliance

QIMR Berghofer is proud to play an integral role in the Queensland Genomics Health Alliance (QGHA), a ground-breaking new collaboration positioning Queensland as a world leader in delivering genomic medicine into the healthcare system.

The QGHA is a five-year research program funded by the Queensland Government that will drive collaboration between the state’s health system and research and academic communities.

It will be led by doctors and will evaluate the ways that genomics can improve health outcomes for Queenslanders and build the case for faster clinical implementation.

The first stage of the QGHA’s work supports four projects, each centred around a disease, disorder or condition, and comprised of teams of medical specialists, medical trainees, genetic counsellors, genetics laboratory staff and bio-informaticians.

The goal of these projects is to evaluate the benefits of using genomic sequencing in the diagnosis and management of patients with particular conditions.

These conditions include maturity onset diabetes of the young (MODY), melanoma, lung cancer and infectious diseases.

In addition to providing research support to these projects, QIMR Berghofer has three staff members in key leadership positions within the Capability-Building Workstreams, which will focus on assessing future workforce development and cultural change in the health system, evaluation of clinical genomics, genomic testing innovation, genomic information management and ethics, legal and social implications.

As genomic research is integrated into clinical practice within Australia, governments and researchers need to evaluate these new technologies and develop local capabilities and infrastructure that will support their successful implementation.

The first round of QGHA funded projects, which were announced in April 2017, are currently in the start-up phase and will run for approximately 18 months.

What is genomics?

The genome is the entire DNA content that is present within one cell of an organism. Genomics is the study of the genome and generally involves a process known as sequencing.

Much of QIMR Berghofer’s research in genomics is determining the complete DNA sequences for several different cancer types, including melanoma, mesothelioma, breast cancer and oesophageal cancer. This work is helping scientists understand how each tumour develops and is suggesting ways that we can improve cancer treatment in the future.
Demonstration Project 1
Maturity Onset Diabetes of the Young (MODY)

This project will use genomic sequencing to determine the prevalence of MODY in women diagnosed with gestational diabetes and whether it is cost-effective to implement routine MODY screening in women with gestational diabetes to ensure accurate diagnosis and optimal care of mother and baby.

Demonstration Project 2
Melanoma

In conjunction with 3D total body photography of moles and birthmarks, the project will undertake genomic testing for people at high risk of melanoma. This will determine the effectiveness of genomics to enable prevention and earlier detection.

Demonstration Project 3
Lung cancer

This project is centred around developing targeted or individualised drug treatment for lung cancer, using whole genome sequencing to determine how effective or ineffective certain drug treatments will be for that individual. The approaches used in the lung cancer project could be applied across other cancer types in the future.

Demonstration Project 4
Infectious diseases

This project will sequence bacterial genomes, allowing a detailed analysis of the genes that relate to antibiotic resistance and infection transmission. This research may help hospitals to reduce the incidence of hospital-acquired infections and to prevent infection outbreaks before they become established.
Run Alice Run!
Since losing her father to melanoma in 2014, Alice Cottrell and her family have been involved in fundraising for QIMR Berghofer.

On 2 July, inspired by the man who always lived his life to the full, Alice Cottrell pushed herself to the limit to run the 42.2 km Gold Coast Marathon to raise funds for vital research.

‘I honestly believe QIMR Berghofer and their scientists are finding treatments and cures for diseases that could affect our family and children in the future’, Alice said.

Thank you for your support Alice!

Bra Bling
Countryco at Blackwater have put the fun back into fundraising with their competition to decorate and name a bra. The bras were put on display in the store for all to see and vote on their favourites.

Customers got behind this novel fundraising idea and the entries were priceless. The competition even attracted people from out of town to come and have a look. Countryco raised just shy of $3500 and the donations are still rolling in. Countryco, we admire your innovation and thank you for your support.

Walking the Walk
Having lost loved ones to cancer, Sandra Hall decided that she would take a ‘little walk’ to raise funds for cancer research at QIMR Berghofer. That ‘little walk’ turned out to be a 10-day, 172 km walk along the UNESCO World Heritage Site of Hadrian’s Wall in the UK.

‘It was a major achievement for me. It’s one of the hardest in the UK and it was my first ever walk’, said Sandra.

With support from her family and friends at the McLeod Country Golf Club, Sandra managed to raise over $3000 for our cancer program. An incredible effort, thank you Sandra!

Fundraise for QIMR Berghofer!
Interested in becoming a fundraiser for QIMR Berghofer? Contact QIMR Berghofer Fundraising Officer Natalie Guardala at natalie.guardala@qimrberghofer.edu.au or call 07 3845 3908 to discuss ideas and opportunities.

You can also get your workplace on board to invest in the future of health. Contact QIMR Berghofer Corporate and Community Engagement Coordinator Jenny Valentine on jenny.valentine@qimrberghofer.edu.au or call 07 3845 3747.

Thank you to all of our amazing fundraisers for supporting medical research!
Brothers Reid Touchdown

Dylan and Lawson Reid, also known as Brothers Reid, are currently in Alaska on the final leg of their round-the-world motorbike adventure. We will celebrate their return at QIMR Berghofer, 300 Herston Road, Herston on World Mental Health Day on Tuesday 10 October 2017 at 10am. All are welcome to attend and join with us in giving the boys a warm homecoming. For more information, please visit our website at qimrberghofer.edu.au

Dylan and Lawson have been riding their motorbikes around the world since March 2015 to raise much needed funds for QIMR Berghofer's research into depression. They were motivated by the loss of their dearly loved sister Heidi to depression in 2011.

'We want to do something in Heidi’s memory that will make a positive difference so other families might not have to go through what we have’, they said.

At least one in five Australians will experience major depressive disorders (MDD) at some time in their life but there is currently no laboratory or imaging test to diagnose them. The funds raised by Brothers Reid will go towards research helping QIMR Berghofer to understand the causes of depression and improve its diagnosis and management.

To support Brothers Reid and bring them closer to their target, please visit everydayhero.com and search for 'Brothers Reid'. To follow their journey, visit facebook.com/brothersreid or brothersreid.com

Wall of Appreciation

QIMR Berghofer’s Wall of Appreciation is often visited by our supporters to view the plaques that have been installed to acknowledge their gifts.

One recent visitor was Frank Calcino, whose son Paul, owner of Calcino Corporation, has generously donated on behalf of his family. Frank, 96, who may just be our most senior supporter, was keen to see the plaque dedicated in memory of his late wife, Mary.

Thank you Calcino family!

A gift in your will can save lives

All kinds of people include a gift to QIMR Berghofer in their will. It doesn’t mean neglecting your family and friends. Of course they come first. We understand that.

Through your gift, regardless of size, you have the potential to improve the health and lives of all of us, young and old.

Your legacy will help secure the future for QIMR Berghofer’s vital research. Every dollar you gift to us will go directly to support medical research. Come and see our work first-hand. We’d be delighted to show you around and introduce you to our dedicated scientists.

When you leave QIMR Berghofer a gift in your will, you’ll also become a member of the The Bancroft Society. VIP privileges include: invitations to exclusive events, special access to our facilities, exclusive lapel pin and an inscription on our Wall of Appreciation.

Your legacy will help secure the future for QIMR Berghofer’s vital research.

For more information, please call Heather Stott on free phone 1800 993 000
TOGETHER WE ARE
THE FUTURE OF HEALTH

100% of all donations go directly to research.
qimrberghofer.edu.au